3.406 \(\int (d \tan (e+f x))^m (a+b \sqrt{c \tan (e+f x)})^2 \, dx\)

Optimal. Leaf size=212 \[ \frac{\left (a^2-b^2 \sqrt{-c^2}\right ) \tan (e+f x) (d \tan (e+f x))^m \text{Hypergeometric2F1}\left (1,m+1,m+2,-\frac{c \tan (e+f x)}{\sqrt{-c^2}}\right )}{2 f (m+1)}+\frac{\left (a^2+b^2 \sqrt{-c^2}\right ) \tan (e+f x) (d \tan (e+f x))^m \text{Hypergeometric2F1}\left (1,m+1,m+2,\frac{c \tan (e+f x)}{\sqrt{-c^2}}\right )}{2 f (m+1)}+\frac{4 a b (c \tan (e+f x))^{3/2} (d \tan (e+f x))^m \text{Hypergeometric2F1}\left (1,\frac{1}{4} (2 m+3),\frac{1}{4} (2 m+7),-\tan ^2(e+f x)\right )}{c f (2 m+3)} \]

[Out]

((a^2 - b^2*Sqrt[-c^2])*Hypergeometric2F1[1, 1 + m, 2 + m, -((c*Tan[e + f*x])/Sqrt[-c^2])]*Tan[e + f*x]*(d*Tan
[e + f*x])^m)/(2*f*(1 + m)) + ((a^2 + b^2*Sqrt[-c^2])*Hypergeometric2F1[1, 1 + m, 2 + m, (c*Tan[e + f*x])/Sqrt
[-c^2]]*Tan[e + f*x]*(d*Tan[e + f*x])^m)/(2*f*(1 + m)) + (4*a*b*Hypergeometric2F1[1, (3 + 2*m)/4, (7 + 2*m)/4,
 -Tan[e + f*x]^2]*(c*Tan[e + f*x])^(3/2)*(d*Tan[e + f*x])^m)/(c*f*(3 + 2*m))

________________________________________________________________________________________

Rubi [A]  time = 0.712759, antiderivative size = 212, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 5, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.172, Rules used = {3670, 15, 1831, 364, 1286} \[ \frac{\left (a^2-b^2 \sqrt{-c^2}\right ) \tan (e+f x) (d \tan (e+f x))^m \, _2F_1\left (1,m+1;m+2;-\frac{c \tan (e+f x)}{\sqrt{-c^2}}\right )}{2 f (m+1)}+\frac{\left (a^2+b^2 \sqrt{-c^2}\right ) \tan (e+f x) (d \tan (e+f x))^m \, _2F_1\left (1,m+1;m+2;\frac{c \tan (e+f x)}{\sqrt{-c^2}}\right )}{2 f (m+1)}+\frac{4 a b (c \tan (e+f x))^{3/2} (d \tan (e+f x))^m \, _2F_1\left (1,\frac{1}{4} (2 m+3);\frac{1}{4} (2 m+7);-\tan ^2(e+f x)\right )}{c f (2 m+3)} \]

Antiderivative was successfully verified.

[In]

Int[(d*Tan[e + f*x])^m*(a + b*Sqrt[c*Tan[e + f*x]])^2,x]

[Out]

((a^2 - b^2*Sqrt[-c^2])*Hypergeometric2F1[1, 1 + m, 2 + m, -((c*Tan[e + f*x])/Sqrt[-c^2])]*Tan[e + f*x]*(d*Tan
[e + f*x])^m)/(2*f*(1 + m)) + ((a^2 + b^2*Sqrt[-c^2])*Hypergeometric2F1[1, 1 + m, 2 + m, (c*Tan[e + f*x])/Sqrt
[-c^2]]*Tan[e + f*x]*(d*Tan[e + f*x])^m)/(2*f*(1 + m)) + (4*a*b*Hypergeometric2F1[1, (3 + 2*m)/4, (7 + 2*m)/4,
 -Tan[e + f*x]^2]*(c*Tan[e + f*x])^(3/2)*(d*Tan[e + f*x])^m)/(c*f*(3 + 2*m))

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[(a^IntPart[m]*(a*x^n)^FracPart[m])/x^(n*FracPart[m]), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 1831

Int[((Pq_)*((c_.)*(x_))^(m_.))/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = Sum[((c*x)^(m + ii)*(Coeff[Pq,
 x, ii] + Coeff[Pq, x, n/2 + ii]*x^(n/2)))/(c^ii*(a + b*x^n)), {ii, 0, n/2 - 1}]}, Int[v, x] /; SumQ[v]] /; Fr
eeQ[{a, b, c, m}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0] && Expon[Pq, x] < n

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 1286

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2))/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-(a*c), 2]}, -
Dist[e/2 + (c*d)/(2*q), Int[(f*x)^m/(q - c*x^2), x], x] + Dist[e/2 - (c*d)/(2*q), Int[(f*x)^m/(q + c*x^2), x],
 x]] /; FreeQ[{a, c, d, e, f, m}, x]

Rubi steps

\begin{align*} \int (d \tan (e+f x))^m \left (a+b \sqrt{c \tan (e+f x)}\right )^2 \, dx &=\frac{c \operatorname{Subst}\left (\int \frac{\left (a+b \sqrt{x}\right )^2 \left (\frac{d x}{c}\right )^m}{c^2+x^2} \, dx,x,c \tan (e+f x)\right )}{f}\\ &=\frac{(2 c) \operatorname{Subst}\left (\int \frac{x \left (\frac{d x^2}{c}\right )^m (a+b x)^2}{c^2+x^4} \, dx,x,\sqrt{c \tan (e+f x)}\right )}{f}\\ &=\frac{\left (2 c (c \tan (e+f x))^{-m} (d \tan (e+f x))^m\right ) \operatorname{Subst}\left (\int \frac{x^{1+2 m} (a+b x)^2}{c^2+x^4} \, dx,x,\sqrt{c \tan (e+f x)}\right )}{f}\\ &=\frac{\left (2 c (c \tan (e+f x))^{-m} (d \tan (e+f x))^m\right ) \operatorname{Subst}\left (\int \left (\frac{2 a b x^{2+2 m}}{c^2+x^4}+\frac{x^{1+2 m} \left (a^2+b^2 x^2\right )}{c^2+x^4}\right ) \, dx,x,\sqrt{c \tan (e+f x)}\right )}{f}\\ &=\frac{\left (2 c (c \tan (e+f x))^{-m} (d \tan (e+f x))^m\right ) \operatorname{Subst}\left (\int \frac{x^{1+2 m} \left (a^2+b^2 x^2\right )}{c^2+x^4} \, dx,x,\sqrt{c \tan (e+f x)}\right )}{f}+\frac{\left (4 a b c (c \tan (e+f x))^{-m} (d \tan (e+f x))^m\right ) \operatorname{Subst}\left (\int \frac{x^{2+2 m}}{c^2+x^4} \, dx,x,\sqrt{c \tan (e+f x)}\right )}{f}\\ &=\frac{4 a b \, _2F_1\left (1,\frac{1}{4} (3+2 m);\frac{1}{4} (7+2 m);-\tan ^2(e+f x)\right ) (c \tan (e+f x))^{3/2} (d \tan (e+f x))^m}{c f (3+2 m)}+\frac{\left (c \left (b^2-\frac{a^2}{\sqrt{-c^2}}\right ) (c \tan (e+f x))^{-m} (d \tan (e+f x))^m\right ) \operatorname{Subst}\left (\int \frac{x^{1+2 m}}{\sqrt{-c^2}+x^2} \, dx,x,\sqrt{c \tan (e+f x)}\right )}{f}-\frac{\left (c \left (b^2+\frac{a^2}{\sqrt{-c^2}}\right ) (c \tan (e+f x))^{-m} (d \tan (e+f x))^m\right ) \operatorname{Subst}\left (\int \frac{x^{1+2 m}}{\sqrt{-c^2}-x^2} \, dx,x,\sqrt{c \tan (e+f x)}\right )}{f}\\ &=\frac{\left (a^2-b^2 \sqrt{-c^2}\right ) \, _2F_1\left (1,1+m;2+m;-\frac{c \tan (e+f x)}{\sqrt{-c^2}}\right ) \tan (e+f x) (d \tan (e+f x))^m}{2 f (1+m)}+\frac{\left (a^2+b^2 \sqrt{-c^2}\right ) \, _2F_1\left (1,1+m;2+m;\frac{c \tan (e+f x)}{\sqrt{-c^2}}\right ) \tan (e+f x) (d \tan (e+f x))^m}{2 f (1+m)}+\frac{4 a b \, _2F_1\left (1,\frac{1}{4} (3+2 m);\frac{1}{4} (7+2 m);-\tan ^2(e+f x)\right ) (c \tan (e+f x))^{3/2} (d \tan (e+f x))^m}{c f (3+2 m)}\\ \end{align*}

Mathematica [A]  time = 1.28323, size = 151, normalized size = 0.71 \[ \frac{\tan (e+f x) (d \tan (e+f x))^m \left (\frac{a^2 \text{Hypergeometric2F1}\left (1,\frac{m+1}{2},\frac{m+3}{2},-\tan ^2(e+f x)\right )}{m+1}+b \left (\frac{4 a \sqrt{c \tan (e+f x)} \text{Hypergeometric2F1}\left (1,\frac{1}{4} (2 m+3),\frac{1}{4} (2 m+7),-\tan ^2(e+f x)\right )}{2 m+3}+\frac{b c \tan (e+f x) \text{Hypergeometric2F1}\left (1,\frac{m+2}{2},\frac{m+4}{2},-\tan ^2(e+f x)\right )}{m+2}\right )\right )}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*Tan[e + f*x])^m*(a + b*Sqrt[c*Tan[e + f*x]])^2,x]

[Out]

(Tan[e + f*x]*(d*Tan[e + f*x])^m*((a^2*Hypergeometric2F1[1, (1 + m)/2, (3 + m)/2, -Tan[e + f*x]^2])/(1 + m) +
b*((b*c*Hypergeometric2F1[1, (2 + m)/2, (4 + m)/2, -Tan[e + f*x]^2]*Tan[e + f*x])/(2 + m) + (4*a*Hypergeometri
c2F1[1, (3 + 2*m)/4, (7 + 2*m)/4, -Tan[e + f*x]^2]*Sqrt[c*Tan[e + f*x]])/(3 + 2*m))))/f

________________________________________________________________________________________

Maple [F]  time = 0.257, size = 0, normalized size = 0. \begin{align*} \int \left ( a+b\sqrt{c\tan \left ( fx+e \right ) } \right ) ^{2} \left ( d\tan \left ( fx+e \right ) \right ) ^{m}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*(c*tan(f*x+e))^(1/2))^2*(d*tan(f*x+e))^m,x)

[Out]

int((a+b*(c*tan(f*x+e))^(1/2))^2*(d*tan(f*x+e))^m,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (\sqrt{c \tan \left (f x + e\right )} b + a\right )}^{2} \left (d \tan \left (f x + e\right )\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*(c*tan(f*x+e))^(1/2))^2*(d*tan(f*x+e))^m,x, algorithm="maxima")

[Out]

integrate((sqrt(c*tan(f*x + e))*b + a)^2*(d*tan(f*x + e))^m, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (2 \, \sqrt{c \tan \left (f x + e\right )} \left (d \tan \left (f x + e\right )\right )^{m} a b +{\left (b^{2} c \tan \left (f x + e\right ) + a^{2}\right )} \left (d \tan \left (f x + e\right )\right )^{m}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*(c*tan(f*x+e))^(1/2))^2*(d*tan(f*x+e))^m,x, algorithm="fricas")

[Out]

integral(2*sqrt(c*tan(f*x + e))*(d*tan(f*x + e))^m*a*b + (b^2*c*tan(f*x + e) + a^2)*(d*tan(f*x + e))^m, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (d \tan{\left (e + f x \right )}\right )^{m} \left (a + b \sqrt{c \tan{\left (e + f x \right )}}\right )^{2}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*(c*tan(f*x+e))**(1/2))**2*(d*tan(f*x+e))**m,x)

[Out]

Integral((d*tan(e + f*x))**m*(a + b*sqrt(c*tan(e + f*x)))**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (\sqrt{c \tan \left (f x + e\right )} b + a\right )}^{2} \left (d \tan \left (f x + e\right )\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*(c*tan(f*x+e))^(1/2))^2*(d*tan(f*x+e))^m,x, algorithm="giac")

[Out]

integrate((sqrt(c*tan(f*x + e))*b + a)^2*(d*tan(f*x + e))^m, x)